475 research outputs found

    Experimental Techniques

    Get PDF
    In this course we will give examples for experimental techniques used in particle physics experiments. After a short introduction, we will discuss applications in silicon microstrip detectors, wire chambers, and single photon detection in Ring Imaging Cherenkov (RICH) counters. A short discussion of the relevant physics processes, mainly different forms of energy loss in matter, is enclosed.Comment: 20 pages with 15 figures included. Course given at the VII Mexican Workshop on Particles and Fields, Merida, Yucatan, Mexico, November 10-17, 1999. Proceedings to be published by AI

    SELEX RICH Performance and Physics Results

    Get PDF
    SELEX took data in the 1996/7 Fixed Target Run at Fermilab. The excellent performance parameters of the SELEX RICH Detector had direct influence on the quality of the obtained physics results.Comment: Contributed talk at the Fourth Workshop on RICH Detectors, June 5-10, 2002, Pylos, Greece. Accepted for publication in NIM

    Semileptonic Decays of Heavy Omega Baryons in a Quark Model

    Full text link
    The semileptonic decays of Ωc\Omega_c and Ωb\Omega_b are treated in the framework of a constituent quark model developed in a previous paper on the semileptonic decays of heavy Λ\Lambda baryons. Analytic results for the form factors for the decays to ground states and a number of excited states are evaluated. For Ωb\Omega_b to Ωc\Omega_c the form factors obtained are shown to satisfy the relations predicted at leading order in the heavy-quark effective theory at the non-recoil point. A modified fit of nonrelativistic and semirelativistic Hamiltonians generates configuration-mixed baryon wave functions from the known masses and the measured \lcle rate, with wave functions expanded in both harmonic oscillator and Sturmian bases. Decay rates of \ob to pairs of ground and excited \omc states related by heavy-quark symmetry calculated using these configuration-mixed wave functions are in the ratios expected from heavy-quark effective theory, to a good approximation. Our predictions for the semileptonic elastic branching fraction of ΩQ\Omega_Q vary minimally within the models we use. We obtain an average value of (84±\pm 2%) for the fraction of ΩcΞ()\Omega_c\to \Xi^{(*)} decays to ground states, and 91% for the fraction of ΩcΩ()\Omega_c\to \Omega^{(*)} decays to the ground state Ω\Omega. The elastic fraction of \ob \to \omc ranges from about 50% calculated with the two harmonic-oscillator models, to about 67% calculated with the two Sturmian models.Comment: 52 pages, 8 figure

    Isospin splittings of doubly heavy baryons

    Get PDF
    The SELEX Collaboration has reported a very large isospin splitting of doubly charmed baryons. We show that this effect would imply that the doubly charmed baryons are very compact. One intriguing possibility is that such baryons have a linear geometry Q-q-Q where the light quark q oscillates between the two heavy quarks Q, analogous to a linear molecule such as carbon dioxide. However, using conventional arguments, the size of a heavy-light hadron is expected to be around 0.5 fm, much larger than the size needed to explain the observed large isospin splitting. Assuming the distance between two heavy quarks is much smaller than that between the light quark and a heavy one, the doubly heavy baryons are related to the heavy mesons via heavy quark-diquark symmetry. Based on this symmetry, we predict the isospin splittings for doubly heavy baryons including Xi_{cc}, Xi_{bb} and Xi_{bc}. The prediction for the Xi_{cc} is much smaller than the SELEX value. On the other hand, the Xi_{bb} baryons are predicted to have an isospin splitting as large as (6.3\pm1.7) MeV. An experimental study of doubly bottomed baryons is therefore very important to better understand the structure of baryons with heavy quarks.Comment: 11 page

    Renaissance of the ~1 TeV Fixed-Target Program

    Get PDF
    This document describes the physics potential of a new fixed-target program based on a ~1 TeV proton source. Two proton sources are potentially available in the future: the existing Tevatron at Fermilab, which can provide 800 GeV protons for fixed-target physics, and a possible upgrade to the SPS at CERN, called SPS+, which would produce 1 TeV protons on target. In this paper we use an example Tevatron fixed-target program to illustrate the high discovery potential possible in the charm and neutrino sectors. We highlight examples which are either unique to the program or difficult to accomplish at other venues.Comment: 31 pages, 11 figure
    corecore